翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Trochilic engine : ウィキペディア英語版
Swing-piston engine
A swing-piston engine is a type of internal combustion engine in which the pistons move in a circular motion inside a ring-shaped "cylinder", moving closer and further from each other to provide compression and expansion. Generally two sets of pistons are used, geared to move in a fixed relationship as they rotate around the cylinder. In some versions the pistons oscillate around a fixed center, as opposed to rotating around the entire engine. The design has also been referred to as a oscillating piston engine, vibratory engine when the pistons oscillate instead of rotate, or toroidal engine based on the shape of the "cylinder".
Two successful swing-piston models have been made: The American-made MYT engine and a Russian ORE which was used in the Yo-Mobile hybrid car. These engines utilize fuel much more efficiently than other internal combustion engines and generate a high torque output with twelve compressions per oscillation. Due to the many flaws within the engine itself, it has not been very successful in the past, but with the technological advances and more practical construction methods, TRPE's (Twin-rotor piston engine) have come a long way in terms of design.
==Steam engines==
Swing-piston engines were initially introduced during the 1820s as alternate steam engine designs, prior to the widespread introduction of the steam turbine. In these examples the "piston" is typically not cylindrical as in a modern internal combustion design, and is generally rectangular in cross-section as seen from the top, rotating in a flat disk "cylinder". From the side they are either flat plates or pie-wedge shaped. The term "swing-piston" is not entirely accurate in these cases, but the operating cycle is identical and is properly considered here.
The first known example was introduced by Elijah Galloway in 1829 for ship propulsion. It featured a single vane rotating through 270 degrees. It appears this version was never built, although a model still exists in the Science Museum. Galloway also designed a wide variety of pure rotary engines using vanes as well.
A more serious attempt was the "Cambrian System" of John Jones in 1841. This design used two or three flat plates that were geared to move closer or further apart as the cycled continued. When the plates were at their closest point, steam was admitted between them using a valve, pushing them apart as the cycle continued. When the plates reached their maximum distance, an internal passage was uncovered that allowed the partially expanded steam to flow across the center of the device into the area on the other side of the vanes, which were now at their minimum distance. In this fashion the design was effectively a compound engine.
Many variations followed, and a number of these would see limited use in the field. Notable among them was John Ericsson's design of 1843, which powered the USS ''Princeton'', the United States' first screw-powered steamship. Charles Parsons also examined the concept and appears to have produced two swing-piston engine designs before moving on to the steam turbine. The Roots brothers also designed a swing-piston engine of a unique type, although they are better known for their supercharger design.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Swing-piston engine」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.